Melanoma Detection Application

Trevor Ash Jae Won Shin

Advisor: Dr. Yi Shang

Overview

- Using built-in camera to locally determine whether a skin lesion is malignant or benign
- American Cancer Society ABCs
 - Asymmetry
 - Border Structure
 - Color
 - Diameter
 - Evolution

getFocusDistances()

- Determining distance between the camera and object in order to find lesion diameter
- To test the accuracy of the returned values, 10 pictures were taken of quarter and nickel coins at every 1 cm interval from 10 to 15 cm

Initial AverageValues from getFocusDistances()

Finding Normalizing Functions

- Using the means of the near, optimal and far values, functions were found to make the values returned from the method more reliable
- Near: x = (y+41.92)/5.3
- Optimal: x = (y+57.51)/6.8714
- \bullet Far: x = (y+85.591)/9.6131
 - Where x is the real distance and y is the returned value

Normalized Average Readings from getFocusDistances()

Determining Size from distance

- Using OpenCV the area of the coins in pixels were found at every centimeter interval
- The mean number of pixels per square millimeter at every centimeter was used to derive a function for converting pixel area to area in square millimeters

Pixels per Square Millimeter Function

Area from Focus-Distance-based Method

Area to Diameter

- The standard deviation of estimated areas was over 37mm²
- Since the problem threshold is 28.27mm², the error had to be reduced
- It was found that the error rate could be reduced by converting area to diameter

Let A be area and D be diameter and let the percent errors of area and diameter be represented by $\frac{\Delta A}{A}$ and $\frac{\Delta D}{D}$, respectively.

Note:
$$A = \frac{\pi D^2}{4}$$

Then,

$$\Delta A = \frac{\pi D \Delta D}{2} \Rightarrow \frac{\Delta A}{A} = \frac{\frac{\pi D \Delta D}{2}}{A} \Rightarrow \frac{\Delta A}{A} = \frac{\frac{\pi D \Delta D}{2}}{\frac{\pi D^2}{4}}$$
$$\Rightarrow \frac{\Delta A}{A} = 2\frac{\Delta D}{D}$$

Diameter from Focus-Distancebased Method

Reference Object Experiment

- To determine the relationship between area and diameter in pixels versus real area and diameter
- Experiment
 - Multiple pictures of Quarter and Nickel coins in intervals of 1 cm from 10 to 15 cm

Reference Object Analysis

- Finding unknown diameter from known diameter
 - Found pixels per millimeter(ppm) by dividing the known region diameter in pixels by its diameter in millimeters $\frac{KR_{pix}}{KR} = ppm$
 - Then dividing the unknown region diameter in pixels by ppm value to return unknown region diameter in millimeters

$$UR_{mm} = \frac{UR_{pix}}{ppm}$$

Reference Object Area Estimations

Reference Object Diameter Calculations

Distance in centimeters

Conclusion

- Both methods prove to be successful in determining an object's diameter
- While the focus-distance method is more convenient, the reference-based method provides greater accuracy