Using Bluetooth on Android Devices to Implement Real-Time Multiplayer Games

July 2011

Brad Boone
Undergraduate, Computer Science
Truman State University
bmb2453@truman.edu

Corey Darr
Undergraduate, Computer Science
Southeast Missouri State University
cbdr38@mail.missouri.edu

Chris Hayes
Undergraduate, Computer Science
University of Missouri – Columbia
cdh7x9@mail.missouri.edu

Dale Musser
Assistant Professor, Computer Science
University of Missouri – Columbia
musserda@missouri.edu

ABSTRACT
 Mobile devices running the Android OS are becoming ubiquitous and are widely used for playing games. The portability of these devices lends itself to the creation of multiplayer gaming using ad-hoc networking in place of external network to route traffic between devices. Since a Bluetooth radio is required in all Android-compliant devices, our team chose to research the feasibility of implementing a real-time multiplayer game between two Android devices, specifically HTC Nexus Ones. We investigated the effects of latency on gameplay, as well as how to divide processing tasks between two phones using a client-server architecture. We developed two games using modified dead-reckoning methods to compensate for latency between phones. We also chose to limit message traffic as much as possible, to avoid possible negative effects from Bluetooth’s low bandwidth capabilities. Our team recorded an average latency of approximately 20ms between devices, and using the methods we implemented, were able to maintain a subjectively stable and synchronized experience across devices. Based on these results, we found that dead-reckoning methods make Android games using ad-hoc networks highly feasible, provided the developers restrain message traffic to critical game events only.

INTRODUCTION
 With the rise of Android as a popular and open-source mobile operating system, development of real-time video games is on the rise. The portability of Android devices (especially smartphones) lends itself to multiplayer gaming; however, without rooting a device, developers are limited to using the Bluetooth wireless protocol for ad-hoc networking. Our work focuses on two-player, real-time, ad-hoc-networked gaming over Bluetooth, primarily on two HTC Nexus One smartphones. We set out to show the feasibility of such games, and to explore the issues of division of processing, latency, and network infrastructure.
 As part of the specification, Bluetooth only requires 800 kilobits per second bandwidth—compare this to Wi-Fi, which requires 11 megabytes per second.[1] Clearly, utilizing a low-bandwidth technology like Bluetooth requires careful use of bandwidth.

RESEARCH METHODS AND MODELS
Prototype: Pong game
 The initial, prototype project is a simple, two-player Pong game. Essentially, each player moves his paddle using the touch screen, in order to hit a ball back and forth. The gameplay itself was quickly developed and executed on a single phone, using custom game interfaces (inspired by Beginning Android Games)[2], as well as code written for a basic Breakout clone.
 In order to implement networking, the Pong game utilizes the Bluetooth Chat Service class included in the sample Android projects with the SDK—this class utilizes threads to listen for, set up, and maintain two-way connections over Bluetooth, sending data using Strings. The game also utilizes modified handler code featured in Google’s sample Bluetooth Chat project.

Division of Labor: Early Attempts
 An initial vision was to give the phones as much autonomy as possible. Given the concrete ball-bouncing mechanics, we envisioned that two games that started at a common point would stay in-sync while virtually independent—all that would be sent back and forth would be paddle positions. However, the inevitable latency involved with Bluetooth causes the two phones to quickly fall out of sync. Essentially, the players end up playing two distinct games, with no way for the games to re-synchronize.
 Next, we created a system wherein both phones process ball physics locally and send messages to inform the partner phone of the perceived ball position. Again, latency causes a slight lag, and a phone’s local ball coordinates will almost always differ slightly from the partner phone’s perceived coordinates. This combination, applying both local processing and coordinates from messages, leads to a ball that slowly “floats” in a direction and zigzags around.
 These issues raised a variety of questions for us to address in moving forward. In the case of a discrepancy, which perceived game state would be correct? Did one phone need to be in charge of shared resources, namely the ball? Should that duty alternate or remain static?
 The generally accepted model for multiplayer gameplay is the client-server model.[3] In the case of two-player real-time gameplay, the designated server device holds the true state of the game, and the client stays in sync by utilizing information received from the server.
 An option is to make the client phone totally reliant on the server phone. That is, the server phone sends ball coordinates and collision information, and the client phone obliges—no local processing required. This approach presents a variety of problems in Pong, with similar implications for other games. In the case of the Pong game, the ball adopts a very jerky, unstable trajectory on the client side—the client constantly updates the x and y coordinates at different times because of the nature of the sent messages.
 Similarly, another attempted method is to have the sever only send messages when the ball starts in the middle of the screen (or resets upon going off-screen) and when the ball collides with a paddle or a side wall. A major issue with this approach is a disappearing ball on the client side—if the client receives a corrupted collision message, its version of the ball will fly off-screen. The ball will reappear the next time the client receives an uncorrupted collision message from the server. Synchronization is maintained overall, but major gaps in the gameplay ruin the experience for both players.
 Essentially, allowing the client to be too reliant on the server leads to an inability to smooth out the issues that arise from Bluetooth latency, breaking the illusion of a unified game and severely undercutting the user experience. Thus, the client should be involved in processing, by assuming as much as possible given the most recent data from the server.

Network Infrastructure: Early Attempts
 In terms of networking, a simplistic method, utilized in the Pong game, is to build up a custom handler class, then allow a single handler object to be shared between various classes. The Pong game uses this type of network structure. However, this causes excessive and unnecessary coupling between the gameplay and the sending and receipt of information. This code is messy, and the overall infrastructure is too broad to be effective.
 Additionally, data in the Pong game is sent using a custom string format, with labels and data separated by semicolons. This unsophisticated format made debugging difficult.

Proof of Concept: Top-Down Shooter
 The final, proof-of-concept game works as follows: two players team up, each as an ink-shooting octopus, to defeat incoming robots and earn high scores. Players use two virtual analog sliders, one to move around and one to shoot in any direction. The game itself is fairly simple—networking over Bluetooth remains the main challenge. As it is a shooting game viewed from above, it will be referred to as a “top-down shooter”.
 To start the game, two players are required. Both run the game application and press “Start Game” which takes them to a “Ready?” screen. From here, a player can press the Settings button on his device to either search through a list of paired devices to try connecting to, or to make his phone discoverable. Both phones are listening for connections, so either player can initiate the connection to his partner. Once one player chooses his partner’s phone to connect to, the link is made, and information can flow in two directions between the phones.
 It is at this point that the application chooses one phone to act as server and one to act as client. In this game, the server is chosen in a fairly arbitrary way—whichever phone’s MAC address comes first alphabetically.
 Once both players press the “Ready?” icon in the middle of their screens, the game begins. Points are earned for shooting enemies, and points are lost for touching enemies. Currently, the game has no end and no way to “win.”

Division of Processing: Final Model
 Dead reckoning, as game developers use the term, is a system whereby the server sends information on important status changes and the client estimates what should happen given the circumstances. For example, say an entity, such as a player character, turns a corner in-game and thus heads in a new direction. The server sends the client a message informing the client of the direction change, and the client processes the character moving as realistically as possible—which varies depending on the type of game—in that direction until it hears of another velocity change.
 In the top-down shooter, dead reckoning is utilized to great effect in the movement of the ink shots and the robots. Whenever an ink shot or robot is spawned in the game, it comes with a position and an angle. This means that when the server phone spawns a monster for the game, all it needs to tell the client is its position and angle—note that all robots move with the same speed. The same logic works for ink shots, as well. A feature of our game is that dead reckoning works both ways, specifically with ink shots. When the client character creates an ink shot, the client phone sends the server the shot’s position and angle and lets the server phone locally process the shot’s trajectory.
 Since shot information gets sent back and forth so often, it is quite effective to let each phone use its local versions of the other player’s shots to locally determine the other player’s robot kills. We find that when only the server is allowed to process robot kills, the client sees noticeable lag between when he hits a robot and when it disappears. Thus, local destruction works best, but the game must ensure synchronization. By generating and sending events back and forth when robots are destroyed, the devices ensure that the two players’ games do not fall out of sync.
 The shooter also uses touch movements—on virtual analog sticks—to move the character. Because of the constant character movement required to play the game well, hundreds of touch events will be generated every second. To cut this down to a reasonable level, we implement a timer-based system, where each phone notifies the other of character movement every 50 milliseconds. When we combine this method with dead reckoning, by sending velocity information, we can fill in the gaps of player movement—as outlined above—to make gameplay look as smooth as possible to each user.

Latency Compensation
 A difficult but essential task is dealing with latency so as to keep the user experience as seamless as possible.
 Since this implementation of the shooter game relies on synchronized bullets, adjusting coordinates for lag proves essential.
 First of all, the game features timer-based latency tests, whereby each phone “pings” the other. The other phone, the one receiving the latency test request, must respond as soon as possible. Truly synchronizing two phones’ clocks is quite difficult, so the game uses the following calculation:

Latency = (SenderTimeSent – SenderTimeReceived) / 2
Equation 1: Calculating Latency using Local Time

SenderTimeSent is the sending phone’s local time when the message is sent out, and SenderTimeReceived is the sending phone’s local time when an acknowledgment is received. Each device performs this test once every 1000 milliseconds (1 second). When players are in the same room, latency generally fluctuates about 50ms, with a high of about 100ms and a low of about 30 ms.
 Using the most recent latency information, a phone that needs to send shot creation data can easily compensate for the expected latency. Before sending shot data, the phone will make a copy of the shot entity, calculate where it should be after the latency time has passed, and sends those coordinates to the other phone. In this manner, the receiving phone’s shots will be “caught up” with those as perceived by the sending phone.

Network Infrastructure: Final Model
 At the lowest level, the top-down shooter uses the same Bluetooth transmission classes as the Pong game, those adapted from Google's chat service example program. However, the overall structure is much more cohesive. The top-down shooter utilizes a series of network classes to separate gameplay from data transmission as much as possible, thus avoiding the coupling of classes as is prevalent in the Pong game.
[bookmark: _GoBack] By creating layers between the game and the network transmission, programmers can make their code much more cohesive, and a lot less painful to debug. The final project utilizes custom classes, mainly a network interface class that shares one handler with the game world, as well as sharing a separate handler with a Bluetooth connection and transmission service class. A major plus of this approach is that it makes adapting the game to another wireless technology (such as Wi-Fi) much more feasible.
 Data is generally sent as custom events, as defined by a variety of classes that denote important game changes (such as a robot being destroyed or shot being fired). Using a series of handlers, the game application on one phone passes data up to a network interface. At this point, data and tags are combined into special objects defined by JavaScript Object Notation, or JSON.
 JSON objects feature mappings of keys to values, much like a hash map, and they allow for cohesive data sending with much less overhead than the comparable Extensible Markup Language (XML) alternative.[4]
 Finally, a small but important detail was quadrupling the size of the write buffer from 1024 bytes to 4096 bytes. This significantly cut down on corrupted messages, and because the buffer is cleared after a message is sent, instances of transmission containing two jumbled messages are few and far between.

Figure 1: Effects of Uncompensated Latency on Client. Green circle shows where bullet appears to be, and orange circle shows where the bullet actually is (according to the server).

CONCLUSION
 Since nearly all multiplayer games involve shared resources and entities, a client-server model proves essential, providing unity and structure. Although Bluetooth features significantly less bandwidth than Wi-Fi, it can work for games, given that the developers effectively utilize event-based messaging, allowing the client to process the game locally given the most recent information. Additionally, a data protocol such as JavaScript Object Notation helps send messages that are both easy to parse and low in overhead, helping to keep latency to a minimum. Programmers would also do well to implement a custom network infrastructure, using layers to separate data transfer from gameplay and prevent coupling of classes.

FUTURE WORK
 The work presented here only touches the surface of real-time multiplayer gaming on Android over Bluetooth. Our games were kept simplistic, and were limited to two, and only two, players.
 An obvious area for future work is development of Bluetooth Android games that allow three or more people to play. The client-server architecture would remain, but the server would potentially have to open multiple sockets and listen for data on all of them. Also, extra work would be required to keep more than two phones in sync as they play the game.
 Multi-hop gameplay is also a possibility, but with Bluetooth, network overhead would cut into the limited, critical bandwidth that is available.
 Although it exists outside the scope of this project, Wi-Fi gaming could be accomplished, thanks to the custom network stack. This is especially if and when Google allows programmers to utilize Wi-Fi without rooting their devices.
 On a final note, the top-down shooter does feature code that works to resend important events, by setting flags in the JSON code that denote whether a message needs to be acknowledged. However, the testing completed was not sufficient to speak to the strengths and weaknesses of this model. Potentially, though, this kind of acknowledgment system could prove incredibly useful—provided it does not take up too much bandwidth.

REFERENCES

[1] Wi-Fi vs Bluetooth – Comparison between Wi-Fi and Bluetooth. Retrieved from http://www.freewimaxinfo.com/wifi-vs-bluetooth-comparison.html.

[2] Zechner, Mario. Beginning Android Games, pp. 185-227. Springer Science+Business Media. 2011: New York. Retrieved from http://proquest.safaribooksonline.com.

[3] Bernier, Yahn W. “Latency Compensating Methods in Client/Server In-game Protocol Design and Optimization.” 2001. http://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization.

[4] Crockford, Douglas. “JSON: The Fat-Free Alternative to XML.” 2006. Retrieved from http://www.json.org/fatfree.html.

image1.png
s
<<
m
o
-
g
=
a8
m
(52

G0

45.0 ms

Daycare Debacle

